

CAI3C

NOVAptamer to Imazalil

Target Information

Imazalil

Imazalil (IMA) is an imidazole fungicide widely used post-harvest to prevent mold and fungal growth on citrus fruits and other crops. It acts by inhibiting ergosterol biosynthesis, a critical component of fungal cell membranes. Due to its persistence and its potential endocrine-disrupting effects, monitoring IMA residues is essential to ensure compliance with food safety regulations.

 $\label{eq:molecular formula: C14H14Cl2N2O} \mbox{Molecular weight: } 297.2 \ g/mol$

H₂C CI

NOVAptamer CAI3C

Chemistry: DNA Size: 82 nt

Molecular weight: 25384 g/mol

Molar extinction coefficient: 787700 l.mol-1.cm-1

Binding buffer: 20 mM HEPES, 20 mM CH₃COONa, 140 mM CH₃COOK, 3 mM (CH₃COO)₂Mg, pH 7.4

A truncated version of anti-IMA aptamer, 36 nt long, is available (see CAI2C-T2).

Folding an aptamer into its tertiary structure is essential for optimal target binding. To achieve this, resuspend the aptamer in assay buffer, heat to 95°C (~2 minutes), then allow to cool to room temperature (~5 minutes) before use.

Affinity Determination

Affinity Determination Method: Fluorescence Apparent K_D in the binding buffer: 21 μ M

Specificity:

- cross reacts with: TBZ (with the similar affinity)

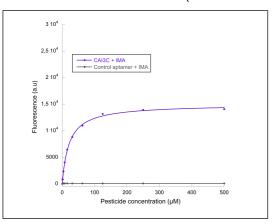


Figure 1. Dose-response fluorescence recovery in a molecular beacon assay following fungicide addition.

Key advantages offered by aptamers over other affinity reagents, notably antibodies

\	High affinity and selectivity
\	Thermostable, long shelf life
\	Animal- and cell-free selection
\	Chemical synthesis
\	Batch to batch reproducibility

Custom synthesis

- Available at different scales upon request, up to 100 nanomoles
- Various purification modes adapted to specific experimental requests
- Extensive conjugation options for diverse applications:
- Grafting: NH₂, SH, biotin, etc.
- Sensing: fluorescent dyes, nanoparticles, redox groups
- Cross-linking: click chemistry reagents
- **Molecular beacons** possible hybridization with a complementary oligonucleotide to form a bimolecular beacon, enabling quantitative detection

Applications (For Research Use Only)

- Biosensing
- Environmental monitoring (e.g., water/soil contamination)
- Food safety and agricultural monitoring (e.g., fungicide residue testing)

Contact information

For more information or inquiries, please contact:

NOVAPTECH

2 avenue Favard, 33170 Gradignan, France https://novaptech.com ♦ contact@novaptech.com ♦ +33 (0) 5 47 74 26 85